
Nima Farsadkia, Hassan Rashidi / International Journal of Engineering Research and Applications (IJERA)
 www.ijera.com Vol. 1, Issue 1, pp.015-021

15

Toward mature method engineering by using CMMI

Nima Farsadkia, Hassan Rashidi
(Qazvin Azad University, Qazvin, Iran)

Abstract—this article is related to the area of situational
method engineering (SME). In this domain, approaches are
developed accordingly to specific project and/or organization
specifications. We propose to adapt particular part an existing
method construction process, namely the assembly-based with
a virtual reference model (WBS model) that extract from
Capability Maturity Model Integration (CMMI). Our
proposal is to offer a better performance in the retrieval of
similar chunks by the introduction of multi criteria (less
conflict & high adjusting with CMM standard) techniques.

Keywords— Method Engineering, Method Chunk, CMMI
Reference Model, CMMI WBS, Cosine Similarity Measure

I. INTRODUCTION

Theoretical research in the field of software
development methodologies (SDM) shows that use of
SDM should improve the efficiency of the
development team and the quality of the developed
product (1). With the intention o realize improving
SDM, we need to have a suitable and qualifiable way
to construct methodologies that adapted and be
compatible with organizations and/or its projects
specific needs and situations. Constructing such a
methodology discussed in Method Engineering (ME)
and Situational Method Engineering (SME) literature.
ME and SME focus on formalizing the use of
methods for systems development. The broader term,
method engineering, is defined as the engineering
discipline to design, construct and adapt methods,
techniques and tools for systems development, a
definition analogous to the IEEE definition of
software engineering (2). A major component of ME
is situational method engineering, which encompasses
all aspects of creating a development method for a
specific situation. Anyway main question that
concerned us is:

"How we can ensure that a constructed method
has expected quality for an organization and/or its
projects?"

Quality can reach by several aspects: such 1) using
method architectures and standard architectural styles

2) measure coverage of functional requirements of
SDM by constructed method, and so on. But these
solutions have an affinity to method engineer
knowledge and his/her experience about decomposing
of ready-made methodologies to fragments (or
chunks), choosing appropriate fragments (or chunks)
from method base and using assembly techniques to
configure new methods. Deficiency in use ME
concepts in any stage and lack experience of method
engineer may be cause defect result. We propose
using a reference model of best practices that
supervise method constructing process to achieve
suitable products (methods). This reference model
obtains from SEI's Capability Maturity Model
Integration (CMMI).

CMMI defines practices that businesses have
implemented on their way to success. Practices cover
topics that include collecting and managing
requirements, formal decision making, measuring
performance, planning work, handling risks, and more
(3). CMMI is not a process or a process framework in
itself, but contains a process reference model used to
perform process assessments (4). Therefore this
model usage will cause to achieve high maturity and
so on high quality in ME results. To perform this idea
we define two equivalent structures to constructing
method at hand and CMMI based reference model
and analyze pair affects for any fragment chose by
critical region method. Then when in ME process a
fragment was chosen, consider that selected fragment
cause to higher maturity of result method and has
lowest defects and mutual exclusions. The paper is
thus structured as follows: The next section, 2, gives
an overview of the ME and SME literature, section 3
presents CMMI and related concepts, next section
deal about our twofold proposal (Internal conflicts
and External similarity measure), finally in section 5
an example is discussed

II. METHOD ENGINEERING AND SITUATIONAL

METHOD ENGINEERING

Nima Farsadkia, Hassan Rashidi / International Journal of Engineering Research and Applications (IJERA)
 www.ijera.com Vol. 1, Issue 1, pp.015-021

16

Method Engineering (ME) was introduced by (5)
and then, more recently, by (6) who named it
methodology engineering; but (7) and (2) strongly
recommend changing this to method engineering, a
term that has been generally accepted. Brinkkemper’s
(2) definition of method engineering is useful here:
“Method engineering is the engineering discipline to
design, construct and adapt methods, techniques and
tools for the development of information systems.”
When applied to a particular situational context, it is
often referred to as “situational method engineering”
or SME. Interestingly, (8) equates the ME approach
to an “ad hoc” approach in that the correct meaning
of ad hoc is “suited to purpose” or “tailored to the
problem at hand”. Method engineering focuses not
on the acquisition of a ready-made method from some
supplier but on the in-house construction of an
organization-specific or project-specific
methodological approach. This construction is
accomplished by selecting pieces of method (method
fragments or method chunks) that have been already
created and stored in a repository or method base. The
suitability of the fragments for adding to a method
base requires appropriate coherency and granularity
(9). To facilitate later retrieval, it is also important
that the fragments suitable for storage are documented
accurately. In (10) and ISO/IEC 24744 suggest
several facilities for formalize, store, retrieve and
manipulate fragments.

After method fragments extractions (11), (12),
describe a generic “modular method meta-model”
that provides the ability to represent any method by
an assembly of (reusable) method chunks. This
process model includes three kinds of SME
approaches namely Assembly-based, Extension-based
and Paradigm-based and permits the combination of
them in a particular SME process. In this paper we
use first approach (Assembly-based) to construct
appropriate and suitable methods.

In this top-down method construction approach,
identification of useful fragments is the remit of the
intention select method chunks in the assembly-based
process model of figure 1.

For each retrieved chunk, its potential usefulness is
first evaluated (evaluation strategy) – this can be done
using similarity measures as described by (11) and
extended by (13), who describes three kinds of
similarity: 1) The number of common aspects based
on “User Situation” and “Reuse Context”, 2) The
forbidden aspects of “User Situation” and “Reuse
Context” and (3) the number of necessary aspects in
the “User Situation”.

When necessary, refinement of the chunk may be
undertaken using one of three further strategies (11):

 Decomposition strategy – where the chunk is a
compound one containing parts not needed for
the current method construction,

 Aggregation strategy – when the chunk only
covers the requirements partially,

 Refinement strategy – suggests seeking
another chunk with a richer set of guidelines
than the current selection.

The meta-knowledge stored with the method
chunks is highly relevant in ensuring a contextual
retrieval. Suggestions for an appropriate query
language are given in (14). The modeling language,
MEL, proposed by (14) also contains a portion useful
for identifying and removing method chunks from the
database.

III. CAPABILITY MATURITY MODEL

INTEGRATION

A Capability Maturity Model (CMM), including
CMMI contains the essential elements of effective
processes. A focus on process provides the
infrastructure and stability necessary to deal with an
ever-changing world and to maximize the
productivity of people and the use of technology to be
competitive (3). Process helps an organization’s
workforce to meet business objectives by helping
them to work smarter, not harder, and with improved
consistency. Effective processes also provide a
vehicle for introducing and using new technology in a
way that best meets the business objectives of the
organization.

In the 1930s, Walter Shewhart began work in
process improvement with his principles of statistical
quality control (16). These principles were refined by
W. Edwards Deming (17), Phillip Crosby (18), and
Joseph Juran (19). Watts Humphrey, Ron Radice, and
others extended these principles further and began

FIGURE 1 - ASSEMBLY-BASED PROCESS MODEL FOR SME (11)

Nima Farsadkia, Hassan Rashidi / International Journal of Engineering Research and Applications (IJERA)
 www.ijera.com Vol. 1, Issue 1, pp.015-021

17

applying them to software in their work at IBM and
the SEI (20). Humphrey’s book, Managing the
Software Process, provides a description of the basic
principles and concepts on which many of the
Capability Maturity Models (CMMs) are based.
CMMs focus on improving processes in an
organization. They contain the essential elements of
effective processes for one or more disciplines and
describe an evolutionary improvement path from ad
hoc, immature processes to disciplined, mature
processes with improved quality and effectiveness.

Today, CMMI is an application of the principles
introduced almost a century ago to this never-ending
cycle of process improvement. The value of this
process improvement approach has been confirmed
over time. Organizations have experienced increased
productivity and quality, improved cycle time, and
more accurate and predictable schedules and budgets
(21). In the CMM, five maturity levels are
distinguished: 1) initial, in which capability is
characteristic of individuals, not organizations or
methods, 2) repeatable, in which project planning is
stable and earlier success can be repeated, 3) defined,

in which project teams tailor a method to their own
project-specific method, 4) managed, in which
information system engineering projects are
quantifiable and predictable, and 5) optimizing, which
can be summarized as continuously improving. Also
CMMI-dev contains 22 process areas. Of those
process areas, 16 are core process areas, 1 is a shared

process area, and 5 are development specific process
areas.

IV. SOLUTION: METHOD ENGINEERING

In (22) CMMI breaks in to work breakdown
structure (WBS) with three levels: 1) policies 2)
Procedures 3) Work products.

A. Dual effects and interaction between MCs

We would assume this structure and its elements
are as resources that when a chunk is selected from
method base consume necessary capabilities from
CMMI's WBS. This method cause that with selecting
any chunks we can measure total method (ology)
maturity (by coverage of more WBS elements) and
detect conflicts of chunks that have negate affects in a
once element.

Consuming of capability derived:

1) There are relationships between any chunks and
CMMI's WBS elements.

2) If two chunks race to affect in one element and
theirs affects negate others, may be cause an
exclusion situation. For example: existence of chunk1
mandatory a special work product of CMMI's WBS
actualizes and then in other whence with existence of
chunk2 same work product make forbidden.

TABLE 2 show 5 probable states of pair effects of
two method chunks with a critical region (CMMI's
WBS element).

When cause mutual exclusion by negate effect of
method chunks some solutions discussed:

 Abort a chunk that has a low suitability and
replace with another.

TABLE 1- CAPABILITY MATURITY MODEL LEVEL AND PA'S

TABLE 2- POSSIBLE PAIR AFFECT OF TWO CHUNKS WITHIN A ELEMENT.

Nima Farsadkia, Hassan Rashidi / International Journal of Engineering Research and Applications (IJERA)
 www.ijera.com Vol. 1, Issue 1, pp.015-021

18

 If second chunk exclude any others, replace
that with another.

 If by iteration of prior solutions cannot find
suitable way, method architecture or situation
must changed and reviewed.

B. Partial and external impacts of MCs on the overall
method maturity level

We may find a solution that hasn't any conflicts,
but cannot be sure the total quality of result method
archived. Because may some necessary key process
areas in CMMI model doesn't covered, and choosing
of chunks and analyze and prevent of mutual
exclusion between them doesn't guaranty coverage of
important aspects of method quality that was hidden
in CMMI practices and it's WBS. To aim that our
result method cover best practices of reference model
must declare and use a similarity measure in
assembling process to direct this process to best
choices. We propose use Cosines similarity measure
between two models (n-dimensional equivalent vector
of reference model and like vector of constructing
model). Using of this measure help us to improve
method construction's direction. In some case we
didn't need to absolutely obtain to reference model
scale, but just enough our method similar and in
direct of reference model, because usually reference
model to reach out schedule and budget will be.

Cosines similarity measure defines as:

A, B is n-dimensional vectors of two models. Each
element of any vector represents total degree of
specific effects of chunks choosing in CMMI's WBS
items. For example assume the first element of
CMMI's WBS refers to “Lists of Criteria for
Distinguishing Requirements Providers” work
product and we have 4 suitable chunks for a place in
our method architecture, The chunk will be selected
to lowest angle with reference model (best practices
or suitable standards), so we have a two-objective
optimization problem: 1) Lowest conflicts between
pair chunks 2) Lowest angle between customized
CMMI's WBS equivalent vector and like vector for
under construction method.

By design a decision tree and its overall traversals;
the above optimization issue in small scale projects
can be solved. Tree structure is well-defined and easy

usage structure and any traversal path from the root to
the leaves is a possible solution of the issue. We must
compute two numbers for any traversal path: 1)
number of solvable or soft1 conflicts (if insoluble or
crisp2 conflicts exist then path would ignore) between
selected chunks on CMMI's WBS's elements, 2) angle
between path solution and expected reference model.

The path would select that these numbers are to its
least. If project scale is small and desired situations
and method architecture is simple, the size of the tree
design can be controlled but if situations are some
complex and/or method architecture is not well
defined may these numbers have mutuality. In the
worst case, none of the parameters have not
significant advantage against another to be selected;
in this case it is better: 1) Method architecture be
reviewed 2) Opposite situations are identified and
then chunks are select 3) method repository be
considered and must new chunks will be made.

May none of these proposals does not resolve the
parameters contrasts; In this case we are dealing with
a combinatorial issue and can solve it with a well-
known optimization algorithm. In simple case, with
weighting or outranking these parameters we can
convert them to ones and then solve problem simply.

V. EXAMPLE

To illustrate our proposal, we have selected
method chunks that deal with information system (IS)
security. Five chunks of RE methods designed for
analyzing Information System security were
identified (23)(30): 1) NFR Framework (23), 2)
KAOS (24), 3) Secure Tropos (25), 4) GBRAM (26),
and 5) Misuse Cases (27). The comparison of these
methods is presented in (28)(30). Within this
example, the given project is described by:

 the great influence on the whole organization;

 the need for ensuring the greater progress;

 the organization does not have the experts in
this field and does not plan to employ them;

 the need for a better explanation of method
chunks and their application.

1 Conflicts between Mandatory or forbidden levels with another level.

2 Conflicts between Mandatory and forbidden levels

Nima Farsadkia, Hassan Rashidi / International Journal of Engineering Research and Applications (IJERA)
 www.ijera.com Vol. 1, Issue 1, pp.015-021

19

The method engineer has chosen three project
characteristics and has described the method chunks
according to methods properties. Thus, these methods
chunks are compared according to six criteria, which
concern two groups: project characteristics and proper
method characteristics. The first group includes
impact, level of innovation, and expertise.

The second group comprises guidance, approach,
and formalism. Depending on project description, the
method engineer has defined the following
preferences rules for these criteria:

 Impact on organization: maximum;

 Level of innovation: maximum;

 Required expertise: minimum;

 Guidance: a predefined taxonomy is better than
heuristics, which is better than a simple
guidelines;

 Approach: a systemic approach is better than
exploratory, which is better than explanatory.

 Formalism: a formal approach is better than
semi-formal one, which is better than informal
one.

The summary of chunks evaluation is presented in
Table 3 (23) .

Now, suppose that in this system we need to cover
maintenance property in our architecture, so another
chunk in this area must be select. In (29) define three
chunks and their comparisons in several concepts: 1)
MaSE, 2) Prometheus, and 3) Tropos. Only the chunk
that extract from Prometheus Method is support
maintenance property. So if because of the need
systematically approach we select Tropos chunk, by
existence this chunk we didn't cover maintenance

feature. Also if we need a chunk to produce guidance
for project existence of this chunk avoid that.

For second criterion, we design a tree that in first
order, security chunk must select and so on
maintenance chunk will select, assume that the above-
mentioned reference model have preferences rules.

As shown in Figure 2, for any leaf we compute a
number that show cosine similarity measure. You see
that select a sequence of (GBRAM, Prometheus) or
(GBRAM, Tropos) has more similarity with CMMI
reference model. But because Tropos has a hard
conflict with maintenance feature, second solution
will be ignored.

VI. CONCLUSION

We have proposed an adaptation of the existing
select and assembly processes with the introduction of
MC techniques. The two approaches (exclusion
analyze and using CMMI reference model) may be
combined within the same method engineering

TABLE 3-IS SECURITY CHUNKS EVALUATION (23)

FIGURE 2- THE TREE STRUCTURE TO DECISION MAKING

Nima Farsadkia, Hassan Rashidi / International Journal of Engineering Research and Applications (IJERA)
 www.ijera.com Vol. 1, Issue 1, pp.015-021

20

process as it will offer a more complete guidance to
select chunks.

Our objective is twofold. Firstly, we offer the
possibility to the method engineer to qualify the
method chunks by their correspondence with projects
and to choose between similar chunks by an
application of MC techniques and exclusion analyze.
Secondly, we propose to characterize the project in
well-defined structure and analyze effects of chunk
select compared with a virtual reference model
(VRM). This VRM is not a practical model but a set
of rules and standards is based on the CMMI to
improve their selection. This typology allows to
identify all their critical aspects and to weight them.

Within our example, we showed the utility of
application of MC techniques.

In near future, our research perspectives include:

 Improve the guidance;

 Using several optimization algorithms to find
best solution;

 Improve the typology presented in this paper in
order to take into account other critical
characteristics considered in CMMI;

 Extend the MC techniques application to the
field of System Engineering based on MC
techniques chunks using CMMI approach.

REFERENCES

1. Avison D., Fitzgerald G.,. Information Systems Development:
Methodologies, Techniques and Tools. Third Edition. s.l. :
McGraw-Hill Education, 2003.

2. Method Engineering: Engineering of Information Systems
Development Methods and Tools. Brinkkemper, S. s.l. :
Information and Software Technology, 1996, pp. 275-280.

3. SEI. CMMI® for Development, Version 1.3. s.l. : SEI, 2010.

4. Process Construction and Customization. Henderson-Sellers,
Serour, McBride, Gonzalez, Dagher. s.l. : Journal of Universal
Computer Science, 2004, Vol. 10, pp. 326-358.

5. A software development model for method engineering,.
Bergstra, J., Jonkers, H. and Obbink,. North-Holland : Elsevier
Science Publishers, 1985.

6. Methodology Engineering: a Proposal for Situation Specific
Methodology Construction. Kumar, K. and Welke, R.J.,. s.l. :
John Wiley & Sons, 1992. Challenges and Strategies for Research
in Systems Development. pp. 257-269.

7. A method engineering approach to information systems
development. van Slooten, K. and Brinkkemper, S.,. North-
Holland : Elsevier Science Publishers, 1993. IFIP WG8.1.

8. Process diversity and a computing old wives’/husbands’ tale,.
Glass, R.L.,. s.l. : IEEE Software, 2000.

9. On the feasibility of situational method engineering. ter
Hofstede, A.H.M. and T.F. Verhoef,. s.l. : Information Systems.,
1997, Vol. 22, pp. 401-422.

10. OLMS – An Object Library Management Support System.
Freeman, C., Henderson-Sellers, B. Sydney : Prentice Hall, 1991,
pp. 175-180.

11. An Assembly Process Model for Method Engineering.
Rolland., J. Ralyte and C. s.l. : Proc. of CAiSE’2001, 2001. Vol.
2068, pp. 267–283.

12. Guiding the construction ot textual the use case specification.
Rolland C, Ben achour. s.l. : Data and knowlege Engineeing
Journal., 1998, pp. 125-160.

13. Adapting Analysis and Design to Software Context. Mirbel, I.,
De Rivieres, V. Proceedings of the 8th International Conference
on Object-Oriented Information Systems (OOIS’02),. pp. 223-
228.

14. A Proposal for Context-Specific Method Engineering.
Rolland, C., Prakash, N. Atlanta, USA, : Chapman & Hall, 1996.
Proceedings of IFIP TC8, WG8.1/8.2 Working Conference on
Method Engineering,. pp. 191-208. In Method Engineering.
Principles of Method Construction and Tool Support.

15. A Method Engineering Language for the Description of
Systems Development Methods (Extended Abstract).
Brinkkemper, S., Saeki, M., Harmsen, F. Berlin : Springer-
Verlag, 2001. Advanced Information Systems Engineering 13th
International Conference, CAiSE 2001. pp. 473-476.

16. Shewhart, W. Economic Control of Quality of Manufactured
Product. New York : Van Nostrand, 1931.

17. Deming, W. Edwards. Out of the Crisis. Cambridge, MA :
MIT Press, 1986.

18. Crosby, Philip B. Quality Is Free: The Art of Making Quality
Certain. New York : McGraw-Hill, 1979.

19. Juran, Joseph M. Juran on Planning for Quality. New York :
Macmillan, 1989.

20. Humphrey, Watts S. Managing the Software Process. Boston :
Addison-Wesley, 1989.

21. Gibson, Diane L., Goldenson, Dennis R. and & Kost, Keith.
Performance Results of CMMI-Based Process Improvement
(CMU/SEI-2006-TR-004, ADA454687). Pittsburgh : Software
Engineering Institute, Carnegie Mellon University, 2006.

22. F.Rico, david. Software process Improvement Using. [Online]
http://davidfrico.com/s-cmmi-wbs.pdf.

Nima Farsadkia, Hassan Rashidi / International Journal of Engineering Research and Applications (IJERA)
 www.ijera.com Vol. 1, Issue 1, pp.015-021

21

23. L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. Non-
functional requirements in software engineering. s.l. : Kluwer
Academic Publishers, 1999.

24. Goal-directed Requirements Acquisition, Science of Computer
Programming. A. Dardenne, A. Lamsweerde, and S. Fickas. s.l. :
Elsevier, 1993, Vol. 20.

25. TROPOS: An Agent Oriented Software Development
Methodology. P. Bresciani, P. Giorgini, F. Giunchiglia, J.
Mylopoulos, and A. Perini. s.l. : Journal of Autonomous Agents
and MultiAgent Systems, 2004, Vol. 8, pp. 203-236.

26. Goal Identification and Refinement in the Specification of
Software Based Information Systems. A.I. Anton. Atlanta, USA :
Ph.D. Dissertation, Georgia Institute of Technology, 1997.

27. Misuse cases help to elicit non-functional requirements.
Alexander, I. s.l. : Computing & Control Engineering Journal,
2003, Vol. 14, pp. 40-45.

28. M. Lassoued and C. Salinesi. Shall IS Security be Treated
Differently in the light of the Open World Assumption? A
Literature Review. Paris : Centre de Recherche en Informatique,,
2006.

29. Comparing Agent-Oriented Methodologies. Khanh Hoa Dam,
MichaelWinikoff. Berlin : Springer-Verlag, 2004.

30. Method Chunks Selection by Multicriteria Techniques: an
Extension of the Assembly-based Approach. Kornyshova E.,
Deneckère R., and Salinesi C. Geneva, Switzerland : Situational
Method, 2007.

